| GOLDEN | THREAD | Mechanisms | Cooking and Nutrition | Structures | Textiles | Digital World | Electrical Systems | |----------------------------------|------------------|--|---|--|---|---|--| | Unit Focus | Golden
Thread | EYFS
Framework/
National
Curriculum | Knowledge | Sk | ills – Design, make and | evaluate | Key vocabulary | | | | • | | Nursery | | | | | Making soup | | Begin to safely
use and
explore a
variety of tools
and
techniques. | Soup is ingredients (usually vegetables and liquid) blended together. Vegetables are grown. Recognise and name some common vegetables. Different vegetables taste different. | Designing a soup re Chopping plasticine Chopping vegetable Tasting the soup ar Describing some of and taste. | e safely.
es with support.
nd giving opinions. | iting food: look, feel, smell | Vegetables Knife Handle Chop Slice Cut Saucepan Chopping board Mix | | Range of
seasonal
projects | | Begin to experiment with colour, design, texture, form and function. Begin to share their creations, explaining the process they have used. | Linked to the project/the children's interests. | ideas and feelings. • Return to and build developing their ability. | l on their previous learr
ity to represent them.
Il motor skills so that th | effects to express their ning, refining ideas and ey can use a range of tools | Wide range of
vocabulary linked to
the project. | | | Reception | | | | | | | |-------------------|-----------|---|---|--|--|--|--| | Junk
Modelling | | Safely use and explore a variety of materials, tools and techniques, experimenting with colour, design, texture, form and function. | To know there are a range to different materials that can be used to make a model and that they are all slightly different. Making simple suggestions to fix their junk model. | Making verbal plans and material choices. Developing a junk model. Improving fine motor/scissor skills with a variety of materials. Joining materials in a variety of ways (temporary and permanent). Joining different materials together. Describing their junk model, and how they intend to put it together. Giving a verbal evaluation of their own and others' junk models with adult support. Checking to see if their model matches their plan. Considering what they would do differently if they were to do it again. Describing their favourite and least favourite part of their model. | Join Stick Cut Bend Slot Scissors Measure Materials Fix | | | | Bookmarks | | Share their creations, explaining the process they have used. Make use of props and materials when | To know that a design is a way of planning our idea before we start. To know that threading is putting one material through an object. | Discussing what a good design needs. Designing a simple pattern with paper. Designing a bookmark. Choosing from available materials. Developing fine motor/cutting skills with scissors. Exploring fine motor/threading and weaving (under, over technique) with a variety of materials. Using a prepared needle and wool to practise threading. Reflecting on a finished product and comparing to their design. | Thread Weave Pattern Sew Sewing needle Embroider Design Evaluate | | | | Boats | | role playing
characters in
narratives
and stories. | To know that 'waterproof' materials are those which do not absorb water. To know that some objects float and others sink. To know the different parts of a boat. | Designing a junk model boat. Using knowledge from exploration to inform design. Making a boat that floats and is waterproof, considering material choices. Making predictions about, and evaluating different materials to see if they are waterproof. Making predictions about, and evaluating existing boats to see which floats best. Testing their design and reflecting on what could have been done differently. Investigating the how the shapes and structure of a boat affect the way it moves. | Waterproof Absorb Prediction Variable Experiment Investigation Float Sink Junk | | | | | | | Year One | | |-------------------------|--|---|---|---| | Constructing a windmill | Build
structures,
exploring how
they can be
made stronger,
stiffer and
more stable. | To understand that cylinders are a strong type of structure To understand that axles are used in structures and mechanisms to make parts turn in a circle. To know that a structure is something that has been made and put together. To know that the sails or blades of a windmill are moved by the wind. | Year One Learning the importance of a clear design criteria. Including individual preferences and requirements in a design. Making stable structures from card. Following instructions to cut and assemble the supporting structure of a windmill. Making functioning turbines and axles which are assembled into a main supporting structure. Finding the middle of an object. Puncturing holes. Adding weight to structures. Creating supporting structures. Cutting evenly and carefully. Evaluating a windmill according to the design criteria, testing whether the structure is strong and stable and altering it if it isn't. Suggest points for improvements. | Axle Base Centre Design Evaluation Equal Evaluate Middle Rotate Rotor Rotor Blades Sails Same Stable Strong Structure | | Puppets | Design purposeful, functional, appealing products for themselves and other users based on design criteria. | To know that stable structures do not topple. To know that adding weight to the base of a structure can make it more stable. To know that 'joining technique' means connecting two pieces of material together. To know that there are various temporary methods of joining fabric by using staples. glue or pins. | Using a template to create a design for a puppet. Cutting fabric neatly with scissors. Using joining methods to decorate a puppet. Sequencing steps for construction. Reflecting on a finished product, explaining likes and dislikes. | Test Weak Wind Windmill Decorate Design Fabric Glue Model Hand puppet Safety pin Staple Stencil Template | | | | | | 1 | |-----------|------------------|------------------------------------------|----------------------------------------------------------|----------------| | | Select from | To understand that | | | | | and use a wide | different techniques | | | | | range of | for joining materials | | | | | materials and | can be used for | | | | | components, | different purposes. | | | | | including | To understand that | | | | | construction | a template (or fabric | | | | | materials, | pattern) is used to cut | | | | | textiles and | out the same shape | | | | | ingredients, | multiple times. | | | | | according to | To know that | | | | | their | drawing a design idea | | | | | characteristics. | is useful to see how | | | | | | an idea will look. | | | | Smoothies | Select from | To know that a | Designing smoothie carton packaging by-hand. | Blender | | | and use a | blender is a machine | Chopping fruit and vegetables safely to make a smoothie. | Fruit | | | range of tools | which mixes | Juicing fruits safely to make a smoothie. | Healthy | | | and equipment | ingredients together | Tasting and evaluating different food combinations. | Ingredients | | | to perform | into a smooth liquid. | Describing appearance, smell and taste. | Recipe | | | practical tasks. | To know that a fruit | Suggesting information to be included on packaging. | Smoothie | | | | has seeds. | Comparing their own smoothie with someone else's. | Vegetable | | | Explore and | To know that fruits | | Seed | | | evaluate a | grow on trees or | | Root | | | range of | vines. | | Leaf | | | existing | To know that | | Stem | | | products. | vegetables can grow | | Flavour | | | | either above or | | Design | | | Use the basic | below ground. | | Juice | | | principles of a | To know that | | Table knife | | | healthy and | vegetables is any | | Juicer | | | varied diet to | edible part of a plant | | Plant | | | prepare dishes | (e.g. roots: potatoes, | | Bush | | | | leaves: lettuce, fruit: | | Vine | | | | cucumber). | | Chopping board | | | | | | Compare | | | | | Year Two | | |-------------|-----------------|--------------------------------------------|--------------------------------------------------------------------|--------------| | Baby Bear's | Generate, | Shapes and | Generating and communicating ideas using sketching and modelling. | Function | | Chair | develop, model | structures with wide, | Learning about different types of structures, found in the natural | Man-made | | | and | flat bases or legs are | world and in everyday objects. | Mould | | | communicate | the most stable. | Making a structure according to design criteria. | Natural | | | their ideas | The shape of a | Creating joints and structures from paper/card and tape. | Stable | | | through | structure affects its | Building a strong and stiff structure by folding paper. | Stiff | | | talking, | strength. | Exploring the features of structures. | Strong | | | drawing, | Materials can be | Comparing the stability of different shapes. | Structure | | | templates, | manipulated to | Testing the strength of own structures. | Test | | | mock-ups and, | improve strength and | Identifying the weakest part of a structure. | Weak | | | where | stiffness. | Evaluating the strength, stiffness and stability of own structure. | | | | appropriate, | Structure is | | | | | information | something which has | | | | | and | been formed from | | | | | communication | parts. | | | | | technology | A 'stable' structure | | | | | | is one which is firmly | | | | | Build | fixed and unlikely to | | | | | structures, | change or move. | | | | | exploring how | A 'strong' structure | | | | | they can be | is one which does not | | | | | made stronger, | break easily. | | | | | stiffer and | A 'stiff' structure or | | | | | more stable. | material is one which | | | | | | does not bend easily. | | | | Fairground | Explore and | Different materials | Selecting a suitable linkage system to produce the desired motion. | Axle | | Wheel | use | have different | Designing a wheel. | Decorate | | | mechanisms in | properties and are | Selecting materials according to their characteristics. | Evaluation | | | their products. | therefore suitable for | Following a design brief. | Ferris wheel | | | | different uses. | Evaluating different designs. | Mechanism | | | Select from | The features of a | Testing and adapting a design. | Stable | | | and use a wide | ferris wheel | | Strong | | | range of | include the wheel, | | Test | | | materials and | frame, pods, a base an | | Waterproof | | | | avia and an evile | | Mode | |----------|------------------|--------------------------------------|------------------------------------------------------------------|--------------------| | | components, | axle and an axle | | Weak | | | including | holder. | | | | | construction | It is important to | | | | | materials, | test my | | | | | textiles and | design as I go along so | | | | | ingredients, | that I can solve any | | | | | according to | problems that may | | | | | their | occur. | | | | | characteristics. | | | | | Making a | Design | Mechanisms are a | Creating a class design criteria for a moving monster. | Evaluation | | Moving | purposeful, | collection of moving | Designing a moving monster for a specific audience in accordance | Input | | Monster | functional, | parts that work | with a design criteria. | Lever | | | appealing | together as a machine | Making linkages using card for levers and split pins for pivots. | Linear motion | | | products based | to produce | Experimenting with linkages adjusting the widths, lengths and | Linkage | | | on design | movement. | thicknesses of card used. | Mechanical | | | criteria. | There is always an | Cutting and assembling components neatly. | Mechanism | | | | input and output in a | Evaluating own designs against design criteria. | Motion | | | Explore and | mechanism. | Using peer feedback to modify a final design. | Oscillating motion | | | use | An input is the | | Output | | | mechanisms in | energy that is used to | | Pivot | | | their products. | start something | | Reciprocating | | | then products. | working. | | motion | | | Select from | To know that an | | Rotary motion | | | and use a | output is the | | Survey | | | range of tools | movement that | | Survey | | | _ | | | | | | and equipment | happens as a result of | | | | | to perform | the input. | | | | | practical tasks. | • To know that a lever | | | | | | is something that | | | | | Evaluate their | turns on a pivot. | | | | | ideas and | To know that a | | | | | products | linkage mechanism is | | | | | against design | made up of a series of | | | | | criteria. | levers. | | | | | | | | | | | | | Year Three | | |------------|-----------------|------------------------------------------|--------------------------------------------------------------------------|-----------------| | Eating | Understand | Not all fruits and | Designing a recipe for a savoury tart. | Arid | | Seasonably | where food | vegetables can be | Following the instructions within a recipe. | Climate | | , | comes from. | grown in the UK. | Tasting seasonal ingredients. | Complementary | | | | Climate affects food | Selecting seasonal ingredients. | Country | | | Prepare and | growth. | Peeling ingredients safely. | Export | | | cook a variety | Vegetables and fruit | Cutting safely with a vegetable knife. | Import | | | of mainly | grow in certain | • Establishing and using design criteria to help test and review dishes. | Mediterranean | | | savoury dishes | seasons. | Describing the benefits of seasonal fruits and vegetables and the | Mock-up | | | using a range | Cooking instructions | impact on the environment. | Mountain | | | of cooking | are known as a | Suggesting points for improvement when making a seasonal tart. | Peel | | | Techniques. | 'recipe'. | | Polar | | | | Imported food is | | Seasonal | | | Understand | food which has been | | Seasons | | | seasonality, | brought into the | | Snip | | | and know | country. | | Temperate | | | where and how | Exported food is | | Texture | | | a variety of | food which has been | | Tropical | | | ingredients are | sent to another | | Weather | | | grown, reared, | country. | | | | | caught and | Eating seasonal | | | | | processed. | foods can have a | | | | | | positive impact on the | | | | | | environment. | | | | | | Similar coloured | | | | | | fruits and vegetables | | | | | | often have similar | | | | | | nutritional benefits. | | | | Wearable | Apply their | To understand that, | Problem solving by suggesting which features on a Micro:bit might be | Analogue | | Technology | understanding | in programming, a | useful and justifying my ideas. | Analyse | | | of computing | 'loop' is code that | Drawing and manipulating 2D shapes, using computer-aided design, | Annotate | | | to program, | repeats something | to produce a point of sale badge. | Badge | | | monitor and | again and again until | Developing design ideas through annotated sketches to create a | CAD | | | control their | stopped. | product concept. | Control | | | products. | | Developing design criteria to respond to a design brief. | Design criteria | | Juliany St. | | | | | |--------------|-----------------|-------------------------------------------|---------------------------------------------------------------------------------------|--------------------| | | Use research | • To know that a | Following a list of design requirements. | Digital | | | and develop | Micro:bit is a pocket- | Writing a program to control (button press) and/or monitor (sense | Digital revolution | | | design criteria | sized, codeable | light) that will initiate a flashing LED algorithm. | Digital world | | | to inform the | computer. | Analysing and evaluating wearable technology. | Electronic | | | design of | To know that a | Using feedback from peers to improve design | Fastening | | | innovative, | simulator is able to | | Feature | | | functional, | replicate the functions | | Feedback | | | appealing | of an existing piece | | Form | | | products that | of technology. | | Function | | | are fit for | | | Initiate | | | purpose, aimed | | | Micro:bit | | | at particular | | | Net | | | individuals or | | | Product concept | | | groups. | | | Program | | | | | | Sense | | | | | | Simulator | | | | | | Technology | | Constructing | Apply their | Wide and flat based | Designing a castle with key features to appeal to a specific person/ | 2D shapes | | a castle | understanding | objects are more | purpose. | 3D shapes | | | of how to | stable. | • Drawing and labelling a castle design using 2D shapes, labelling: -the | Castle | | | strengthen, | The importance of | 3D shapes that will create the features - materials needed and colours. | Design criteria | | | stiffen and | strength and stiffness | Designing and/or decorating a castle tower on CAD software. | Evaluate | | | reinforce more | in structures. | Constructing a range of 3D geometric shapes using nets. | Facade | | | complex | That a castle needed | Creating special features for individual designs. | Feature | | | structures. | to be strong and | Making facades from a range of recycled materials. | Flag | | | | stable to withstand | • Evaluating own work and the work of others based on the aesthetic | Net | | | Evaluate their | enemy attack. | of the finished product and in comparison to the original design. | Recyclable | | | ideas and | A paper net is a flat | Suggesting points for modification of the individual designs. | Scoring | | | products | 2D shape that can | | Stable | | | against their | become a 3D shape | | Structure | | | own design | once assembled. | | Tab | | | criteria and | A design | | | | | consider the | specification is a list of | | | | | views of | success criteria for a | | | | | others. | product. | | | | | | | Year Four | | |---------------|-----------------|-------------------------------------------|--------------------------------------------------------------------------|-----------------| | Pavilions | Apply their | What a frame | Designing a stable pavilion structure that is aesthetically pleasing and | Aesthetic | | | understanding | structure is. | selecting materials to create a desired effect. | Cladding | | | of how to | A 'free-standing' | Building frame structures designed to support weight. | Design criteria | | | strengthen, | structure is one which | Creating a range of different shaped frame structures. | Evaluation | | | stiffen and | can stand on its own. | Making a variety of free standing frame structures of different shapes | Frame structure | | | reinforce more | A pavilion is a | and sizes. | Function | | | complex | decorative building or | Selecting appropriate materials to build a strong structure and | Inspiration | | | structures. | structure for leisure | cladding. | Pavilion | | | | activities. | Reinforcing corners to strengthen a structure. | Reinforce | | | Understand | Cladding can be | Creating a design in accordance with a plan. | Stable | | | how key events | applied to structures | Learning to create different textural effects with materials. | Structure | | | and individuals | for different effects. | Evaluating structures made by the class. | Target audience | | | in design and | Aesthetics are how a | Describing what characteristics of a design and construction made it | Target customer | | | technology | product looks. | the most effective. | Texture | | | have helped | A product's function | Considering effective and ineffective designs. | Theme | | | shape the | means its purpose. | | | | | world | The target audience | | | | | | means the person or | | | | | | group of people a | | | | | | product is designed | | | | | | for. | | | | | | Architects consider | | | | | | light, shadow and | | | | | | patterns when | | | | | | designing. | | | | Making a | Understand | All moving things | Designing a shape that reduces air resistance. | Aesthetic | | slingshot car | and use | have kinetic energy. | Drawing a net to create a structure from. | Air resistance | | | mechanical | Kinetic energy is the | Choosing shapes that increase or decrease speed as a result of air | Chassis | | | systems in | energy that | resistance. | Design | | | their products. | something (object/ | Personalising a design. | Design criteria | | | | person) has by being | Measuring, marking, cutting and assembling with increasing accuracy. | Function | | | Select from | in motion. | Making a model based on a chosen design. | Graphics | | | and use a | Air resistance is the | Evaluating the speed of a final product based on: the effect of shape | Kinetic energy | | | wider range of | level of drag on an | on speed and the accuracy of workmanship on performance. | Mechanism | | | | | | T | |---------|------------------|-------------------------------------------|--------------------------------------------------------------------|-----------------| | | tools and | object as it is forced | | Net | | | equipment to | through the air. | | Structure | | | perform | The shape of a | | | | | practical tasks. | moving object will | | | | | | affect how it moves | | | | | | due to air resistance. | | | | Torches | Understand | Electrical conductors | Designing a torch, giving consideration to the target audience and | Battery | | | and use | are materials which | creating both design and success criteria focusing on features of | Bulb | | | electrical | electricity can pass | individual design ideas. | Buzzer | | | systems in | through. | Making a torch with a working electrical circuit and switch. | Cell | | | their products. | Electrical insulators | Using appropriate equipment to cut and attach materials. | Component | | | | are materials which | Assembling a torch according to the design and success criteria. | Conductor | | | Investigate and | electricity cannot | Evaluating electrical products. | Copper | | | analyse a range | pass through. | Testing and evaluating the success of a final product. | Design criteria | | | of existing | A battery contains | | Electrical item | | | products. | stored electricity that | | Electricity | | | | can be used to power | | Electronic item | | | Use research | products. | | Function | | | and develop | An electrical circuit | | Insulator | | | design criteria | must be complete for | | Series circuit | | | to inform the | electricity to flow. | | Switch | | | design of | A switch can be | | Test | | | innovative, | used to complete and | | Torch | | | functional, | break an electrical | | Wire | | | appealing | circuit. | | | | | products that | | | | | | are fit for | | | | | | purpose, aimed | | | | | | at particular | | | | | | individuals or | | | | | | groups. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | ı | 1 | 1 | ì | | | | | Year Five | | |-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------| | Doodlers | Understand and use electrical systems in their products. Evaluate their ideas and products against their own design criteria and consider the views of others to improve their work. | Series circuits only have one direction for the electricity to flow. When there is a break in a series circuit, all components turn off. An electric motor converts electrical energy into rotational movement. A motorised product is one which uses a motor to function. Product analysis is critiquing the products strengths | Identifying factors that could be changed on existing products and explaining how these would alter the form and function of the product. Developing design criteria based on findings from investigating existing products. Developing design criteria that clarifies the target user. Altering a product's form and function by tinkering with its configuration. Making a functional series circuit, incorporating a motor. Constructing a product with consideration for the design criteria. Breaking down the construction process into steps so that others can make the product. Carry out a product analysis to look at the purpose of a product along with its strengths and weaknesses. Determining which parts of a product affect its function and which parts affect its form. Analysing whether changes in configuration positively or negatively | Circuit component Configuration Current Develop DIY Investigate Motor Motorised Problem solve Product analysis Series circuit Stable Target user | | | to improve | Product analysis is critiquing the products strengths and weaknesses. 'Configuration' means how the parts of a product are | parts affect its form. | | | Making a
Pop Up Book | Understand and use mechanical systems in their products. Evaluate their ideas and products against their own design | arranged. Mechanisms control movement. Mechanisms can be used to change one kind of motion into another. How to use sliders, pivots and folds to create paper-based mechanisms. A design brief is a description of what I | Designing a pop-up book which uses a mixture of structures and mechanisms. Naming each mechanism, input and output accurately. Storyboarding ideas for a book. Following a design brief to make a pop up book, neatly and with focus on accuracy. Making mechanisms and/or structures using sliders, pivots and folds to produce movement. Using layers and spacers to hide the workings of mechanical parts for an aesthetically pleasing result. Evaluating the work of others and receiving feedback on own work. Suggesting points for improvement. | Aesthetic Computer-aided design (CAD) Caption Design Design brief Design criteria Exploded-diagram Function Input Linkage Mechanism | | | criteria and | am going to design | | Motion | |--------------|------------------|-------------------------|--|---------------------| | | consider the | and make. | | Output | | | views of others | Designers often | | Pivot | | | to improve | want to hide | | Prototype | | | their work. | mechanisms to make | | Slider | | | | a product more | | Structure | | | | aesthetically pleasing. | | Template | | Developing a | Understand | where meat comes | Adapting a traditional recipe, understanding that the nutritional value | Abattoir | | Recipe | and apply the | from - learning that | of a recipe alters if you remove, substitute or add additional | Adaptation | | | principles of a | beef is from cattle and | ingredients. | Balanced | | | healthy and | how beef is reared | Writing an amended method for a recipe to incorporate the relevant | Beef | | | varied diet. | and processed. | changes to ingredients. | Brand | | | | Recipes can be | Designing appealing packaging to reflect a recipe. | Cook | | | Select from | adapted to suit | Researching existing recipes to inform ingredient choices. | Cross-contamination | | | and use a | nutritional needs and | Cutting and preparing vegetables safely. | Develop | | | wider range of | dietary requirements. | Using equipment safely, including knives, hot pans and hobs. | Enhance | | | materials and | • I can use a | Knowing how to avoid cross-contamination. | Equipment | | | components, | nutritional calculator | Following a step by step method carefully to make a recipe. | Farm | | | including | to see how healthy a | Identifying the nutritional differences between different products and | Label | | | construction | food option is. | recipes. | Measure | | | materials, | • 'Cross- | Identifying and describing healthy benefits of food groups. | Nutrient | | | textiles and | contamination' means | | Nutrition | | | ingredients, | bacteria and germs | | Nutritional value | | | according to | have been passed | | Preference | | | their functional | onto ready-to-eat | | Press | | | properties and | foods and it happens | | Process | | | aesthetic | when these foods mix | | Safety | | | qualities. | with raw meat or | | Theme | | | • | unclean objects. | | | | | | Coloured chopping | | | | | | boards can prevent | | | | | | cross-contamination. | | | | | | Nutritional | | | | | | information is found | | | | | | on food packaging. | | | | Year Six | | | | | | | | | | |-------------|--|--|---|--|--|--|--|--|--| | Waistcoats | | Select from and use a wider range of materials and components, including construction materials, textiles and ingredients, according to their functional properties and aesthetic qualities. | To understand that it is important to design clothing with the client/ target customer in mind. To know that using a template (or clothing pattern) helps to accurately mark out a design on fabric. To understand the importance of consistently sized stitches. | Designing a waistcoat in accordance to a specification linked to set of design criteria. Annotating designs, to explain their decisions. Using a template when cutting fabric to ensure they achieve the correct shape. Using pins effectively to secure a template to fabric without creases or bulges. Marking and cutting fabric accurately, in accordance with their design. Sewing a strong running stitch, making small, neat stitches and following the edge. Tying strong knots. Decorating a waistcoat, attaching features (such as appliqué) using thread. Finishing the waistcoat with a secure fastening (such as buttons). Learning different decorative stitches. Sewing accurately with evenly spaced, neat stitches. Reflecting on their work continually throughout the design, make and evaluate process. | Accurate Adapt Annotate Design Design criteria Detail Fabric Fastening Knot Properties Running-stitch Seam Sew Shape Target audience Target customer Template Thread Unique Waistcoat Waterproof | | | | | | Playgrounds | | Apply their understanding of how to strengthen, stiffen and reinforce more complex Structures. Select from and use a wider range of tools and | To know that structures can be strengthened by manipulating materials and shapes. To understand what a 'footprint plan' is. To understand that in the real world, design , can impact users in positive and negative ways. | Designing a playground featuring a variety of different structures, giving careful consideration to how the structures will be used, considering effective and ineffective designs. Building a range of play apparatus structures drawing upon new and prior knowledge of structures. Measuring, marking and cutting wood to create a range of structures. Using a range of materials to reinforce and add decoration to structures. Improving a design plan based on peer evaluation. Testing and adapting a design to improve it as it is developed. Identifying what makes a successful structure. | Adapt Apparatus Cladding Coping saw Dowel Jelutong Mark out Modify Natural materials Plan view Prototype Reinforce Structure | | | | | | | equipment to perform | • To know that a prototype is a cheap | | Tenon saw
Texture | |------------|-----------------------------|--|--|----------------------| | | perform
practical tasks. | model to test a design | | User | | | practical tasks. | idea. | | Vice | | | | idea. | | vice | | | | | | | | Navigating | Apply their | To know that | Writing a design brief from information submitted by a client. | 3D CAD | | the World | understanding | accelerometers can | Developing design criteria to fulfil the client's request. | Application (apps) | | | of computing | detect movement. | Considering and suggesting additional functions for my navigation | Biodegradable | | | to program, | To understand that | tool. | Boolean | | | monitor and | sensors can be useful | Developing a product idea through annotated sketches. | Cardinal compass | | | control their | in products as they | Placing and manoeuvring 3D objects, using CAD. | Client | | | products. | mean the product can | • Changing the properties of, or combining one or more 3D objects, | Convince | | | | function without | using CAD. | Corrode | | | Generate, | human input. | Considering materials and their functional properties, especially those | Duplicate | | | develop, model | To know that | that are sustainable and recyclable (for example, cork and bamboo). | Environment friendly | | | and | designers write design | Explaining material choices and why they were chosen as part of a | Finite | | | communicate | briefs and develop | product concept. | Function | | | their ideas | design criteria to | Programming an N, E, S, W cardinal compass. | Functional | | | through | enable them | Explaining how my program fits the design criteria and how it would | GPS tracker | | | discussion, | to fulfil a client's | be useful as part of a navigation tool. | If statement | | | annotated | request. | Developing an awareness of sustainable design. | Infinite | | | sketches, | To know that | Identifying key industries that utilise 3D CAD modelling and | Investment | | | cross-sectional | 'multifunctional' | explaining why. | Manufacture | | | and exploded | means an object or | Describing how the product concept fits the client's request and how | Mouldable | | | diagrams, | product has more | it will benefit the customers. | Navigation | | | prototypes, | than one function. | • Explaining the key functions in my program, including any additions. | Non-recyclable | | | pattern pieces | To know that | Explaining how my program fits the design criteria and how it would | Product lifecycle | | | and | magnetometers are | be useful as part of a navigation tool. | Product lifespan | | | computer- | devices that measure | • Explaining the key functions and features of my navigation tool to the | Sustainable design | | | aided design. | the Earth's magnetic | client as part of a product concept pitch. | Variable | | | | field to determine | Demonstrating a functional program as part of a product concept | Workplane | | | | which direction you | pitch. | | | | | are facing. | | |